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Abstract

Limit cycle oscillations of a two-degree-of-freedom airfoil motion with cubic nonlinearity in the restoring
forces are investigated. The harmonic balance method is used to derive a frequency relation that depends
only on airfoil parameters. The amplitudes of the pitch and plunge motions can be computed from
analytical expressions once the frequency is known. The method is extended to higher harmonics.
Illustrative examples are given and the results are compared with numerical computations.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The motion of an airfoil with a cubic nonlinearity in the stiffness restoring force has been
studied as early as the 1950s by Woolston et al. [1] and Shen [2]. This problem was later analysed
numerically by Lee and LeBlanc [3], and analytically by Lee et al. [4] and Liu et al. [5].
Experimentally, O’Neil and Stragnac [6] investigated the flutter boundary for limit cycle
oscillations and found the agreement with numerical simulation to be fairly satisfactory. The
theoretical studies were mainly concerned with cubic nonlinearities that are small. For small
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

ah non-dimensional distance from air-
foil mid-chord to elastic axis

b airfoil semi-chord
Ch, Ca damping coefficients in plunge and

in pitch
CL(t), CM(t) aerodynamic lift and pitching

moment coefficients
f non-dimensional linear frequency
G(x), M(a) nonlinear plunge and pitch stiffness

terms
HB1 first harmonic balance method
HB3 third harmonic balance method
h plunge displacement
Ia airfoil mass moment of inertia about

elastic axis
Kx, Ka stiffness in plunge and in pitch,

Kx=Kh

m airfoil mass
P(t) externally applied forces
p(t) forces acting on the airfoil
Q(t) externally applied moments
R1, R3 amplitudes of the first and the third

harmonics in the pitch motion
r(t) moments acting on the airfoil
ra radius of gyration about the elastic

axis
S airfoil static moment about the

elastic axis

t time
U free-stream velocity
U* non-dimensional velocity, U� ¼

U=ðboaÞ:
U�

L linear flutter speed
X eight-dimensional vector variable
xa non-dimensional distance from the

airfoil elastic axis to the centre of
mass

a pitch angle of airfoil
b cubic coefficient in pitch
g cubic coefficient in plunge
�1; �2 constants in Wagner’s function
za; zx viscous damping ratios in pitch and

in plunge
m airfoil/air mass ratio, m ¼ m=ðprb2Þ

x nondimensional plunge displace-
ment, x ¼ h=b:

t non-dimensional time, t ¼ Ut=b

fðtÞ Wagner’s function
f3 phase angle in the pitch motion
j1;j3 phase angles in the plunge motion
c1; c2 constants in Wagner’s function
o fundamental frequency of the mo-

tion
ox; oa natural frequencies in plunge and in

pitch
�o frequency ratio, �o ¼ ox=oa
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departure from linearity for the structural stiffness, it was found in Ref. [4] that at a velocity U�

equal to the linear flutter speed U�
L; a supercritical Hopf bifurcation emerges and limit cycle

oscillations are observed at increasing U�=U�
L ratios above unity. However, when large nonlinear

structural forces are present, the airfoil motion may exhibit other types of motion.
This paper considers only structural nonlinearities although in aeroelastic problems

aerodynamic nonlinearities are also important at high subsonic velocities, especially at transonic
flow conditions [7]. Recently, Thomas et al. [8] used a frequency domain harmonic balance
method to model limit cycle oscillations of airfoil sections.
2. Analytical formulation

Fig. 1 gives the symbols used in the analysis of a two-degree-of-freedom (2-dof) airfoil motion.
The plunge deflection is denoted by h, positive in the downward direction, and a is the pitch angle
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about the elastic axis, positive nose up. The elastic axis is located at a distance ahb from the mid-
chord, while the mass centre is located at a distance xab from the elastic axis, where b is the airfoil
semi-chord. Both distances are positive when measured towards the trailing edge of the airfoil.
The aeroelastic equations of motion for linear springs have been derived by Fung [9]. For
nonlinear restoring forces, the coupled bending-torsion equations for the airfoil can be written as
follows:

m €h þ S €aþ Ch
_h þ �GðhÞ ¼ pðtÞ; (1)

S €h þ Ia €aþ Ca _aþ �MðaÞ ¼ rðtÞ; (2)

where the symbols m, S, Ch, Ia and Ca are the airfoil mass, airfoil static moment about
the elastic axis, damping coefficient in plunge, wing mass moment of inertia about elastic
axis, and torsion damping coefficient, respectively. �GðhÞ and �MðaÞ are the nonlinear plunge
and pitch stiffness terms, and p(t) and r(t) are the forces and moments acting on the
airfoil, respectively. Defining x ¼ h=b; Kx ¼ Kh; xa ¼ S=bm; ox ¼ ðKx=mÞ

1=2; oa ¼ ðKa=IaÞ
1=2;

ra ¼ ðIa=mb2Þ1=2; zx ¼ C=2ðmKhÞ
1=2 and za ¼ C=2ðIaKaÞ

1=2; Eqs. (1) and (2) can be written in
nondimensional form [7] as follows:

x00 þ xaa00 þ 2zx
�o

U� x
0
þ

�o
U�

� �2

GðxÞ ¼ �
1

pm
CLðtÞ þ

PðtÞb
mU2

; (3)

xa

r2a
x00 þ a00 þ 2

za
U� a

0 þ
1

U�2
MðaÞ ¼

2

pmr2a
CMðtÞ þ

QðtÞ
mU2r2a

; (4)

where GðxÞ ¼ �GðhÞ
�

Kx and MðaÞ ¼ �MðaÞ
�

Ka:
In Eqs. (3) and (4), U* is a nondimensional velocity defined as U� ¼ U=boa and �o ¼ ox=oa;

where ox and oa are the uncoupled plunging and pitching mode natural frequencies, respectively,
U is the freestream velocity, and the 0 denotes differentiation with respect to the nondimensional
time t defined as t=Ut/b. CL(t) and CM(t) are the lift and pitching moment coefficients,
respectively, and m is the airfoil/air mass ratio (m/pr2). For incompressible flow, Fung [9] gives the
Fig. 1. Schematic of airfoil with 2 dof motion.
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following expressions for CL(t) and CM(t):

CLðtÞ ¼ p x00 � aha00 þ a0
� �

þ 2p að0Þ þ x0ð0Þ þ 1
2
� ah

� �
a0ð0Þ

� 	
fðtÞ

þ 2p
Z t

0

fðt� sÞ a0ðsÞ þ x00ðsÞ þ 1
2
� ah

� �
a00ðsÞ

� �
ds; ð5Þ

CMðtÞ ¼ p 1
2
þ ah

� �
að0Þ þ x0ð0Þ þ 1

2
� ah

� �
a0ð0Þ

� 	
fðtÞ þ p 1

2
þ ah

� � Z t

0

fðt� sÞ

a0ðsÞ þ x00ðsÞ þ 1
2
� ah

� �
a00ðsÞ

� 	
dsþ

p
2

ah x00 � aha00
� �

� 1
2
� ah

� � p
2
a0 �

p
16

a00; ð6Þ

where the Wagner function fðtÞ is given by

fðtÞ ¼ 1� c1e
��1t � c2e

��2t (7)

and the constants c1 ¼ 0:165; c2 ¼ 0:335; �1 ¼ 0:0455 and �2 ¼ 0:3 are obtained from Jones [10].
P(t) and Q(t) are the externally applied forces and moments, respectively, and they are set to zero
in this study.
Due to the presence of the integral terms in the integro-differential equations. (3) and (4), it is

cumbersome to integrate them numerically. A set of simpler equations was derived by Lee et al.
[7], and they introduced four new variables

w1 ¼

Z t

0

e��1ðt�sÞaðsÞ ds; w2 ¼

Z t

0

e��2ðt�sÞaðsÞds;

w3 ¼

Z t

0

e��1ðt�sÞxðsÞ ds; w4 ¼

Z t

0

e��2ðt�sÞxðsÞ ds: ð8Þ

The resulting set of eight first-order ordinary differential equations by a suitable transformation is
given as

dX=dt ¼ fðX; tÞ (9)

where X ¼ x1; x2; :::; x8f g ¼ a; a0; x; x0;w1;w2;w3;w4

� 	
2 R8:

For a cubic spring in the pitch dof, M(a) is given by

MðaÞ ¼ aþ ba3; (10)

where b is a constant. When b40, M(a) represents a cubic hard spring while it represents
a cubic soft spring when bo0. For a cubic spring in the plunge dof, similar to Eq. (10), GðxÞ is
given by

GðxÞ ¼ xþ gx3; (11)

where g is a constant. Hence, the aeroelastic system for a self-excited system with cubic
nonlinearities of the form given in Eqs. (10) and (11) can be written as

c0x
00
þ c1a00 þ c2x

0
þ c3a0 þ ðc4 þ c10Þxþ c5aþ c6w1

þ c7w2 þ c8w3 þ c9w4 þ c10gx
3
¼ 0;

d0x
00
þ d1a00 þ d2x

0
þ d3a0 þ d4xþ ðd5 þ d10Þaþ d6w1

þ d7w2 þ d8w3 þ d9w4 þ d10ba3 ¼ 0: ð12Þ
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The coefficients ci and di (i=0,1,2,y,10) are functions of system parameters and the
expressions are given in Appendix A.

2.1. First harmonic balance method

First, we study a single cubic hard spring in the pitch dof, i.e. ba0 and g ¼ 0: For motions
dominated by the first harmonic, we assume [2]

aðtÞ ¼ a1 sinot; xðtÞ ¼ e1 sinotþ f 1 cosot: (13)

Substituting Eq. (13) into Eqs. (8) and (12), and collecting the coefficients of sin ot and cos ot,
we obtain the system of a1, e1, f1 and o:

m1a1 þ p1e1 þ q1 f 1 ¼ 0; m2a1 þ p2e1 þ q2 f 1 ¼ 0;

m3a1 þ p3e1 þ q3 f 1 þ
3
4
d10ba31 ¼ 0; m4a1 þ p4e1 þ q4 f 1 ¼ 0; ð14Þ

where mi (i=1, 2, 3, 4), pi (i=1, 2, 3, 4), and qi (i=1, 2, 3, 4) are functions of system parameters
and frequency o , and their expressions are given in Appendix B. For velocities larger than the
bifurcation value, the motions have limited-amplitude, i.e. there exist nonzero solutions to
Eq. (14). The first, second and fourth equations of Eq. (14) are linear in a1, e1 and f1. Therefore,
the determinant of these three equations should be zero, i.e. the frequency of the motion satisfies
the algebraic equation

m1ðp2q4 � p4q2Þ � m2ðp1q4 � p4q1Þ þ m4ðp1q2 � p2q1Þ ¼ 0: (15)

This equation can be converted to a polynomial equation. Writing x=o2, we have after some
algebra the following frequency equation (in terms of x, t1 and t2):

L0 þ L1t1 þ L2t2 þ L3t
2
1 þ L4t

2
2 þ L5t1t2 þ L6t

3
1 þ L7t

3
2 þ L8t

2
1t2 þ L9t1t

2
2 ¼ 0: (16)

Li (i = 0,y,9) are given in Appendix C. For the cases we shall consider (see the next
section) where ah=�1/2, Eq. (16) can be simplified since Li=0 (i=6,7,8,9), and it can be
expressed as

ð�21 þ xÞ2ð�22 þ xÞ2L0 þ ð�21 þ xÞð�22 þ xÞ2L1 þ ð�21 þ xÞ2ð�22 þ xÞL2

þ ð�22 þ xÞ2L3 þ ð�21 þ xÞ2L4 þ ð�21 þ xÞð�22 þ xÞL5 ¼ 0: ð17Þ

Eq. (17) is a six-degree polynomial equation in x, and the highest order of x is in the first term
since Li (i=0,1,2,y,5) are quadratic polynomials of x.
If the condition Li=0 (i=6,7,8,9) is not satisfied, Eq. (16) yields an eight-degree polynomial

equation in x, similar to Eq. (17). Once the frequency is obtained, e1 and f1 can be solved from the
first two equations of Eq. (14) in terms of a1, that is,

e1 ¼ E1a1; f 1 ¼ F1a1; (18)

where E1 and F1 are functions of system parameters and the frequency o, and their expressions
are given in Appendix B. Substituting Eq. (18) into the third equation of Eq. (14) yields the



ARTICLE IN PRESS

B.H.K. Lee et al. / Journal of Sound and Vibration 281 (2005) 699–717704
solution of a1 as

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
4ðm3 þ p3E1 þ q3F1Þ

3d10b

s
: (19)

Since a1 is the amplitude of the pitch motion, Eq. (19) is the amplitude–frequency relationship
for the pitch motion. From Eqs. (18) and (19) the amplitude–frequency relation for the plunge
motion is given as

r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ f 21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
4 E2

1 þ F2
1

� �
ðm3 þ p3E1 þ q3F1Þ

3d10b

s
: (20)

Therefore, given a set of system parameters, first the frequency can be solved from Eq. (16) or
(17) if Li=0 (i=6,y,9), then the amplitude of the pitch and plunge motions can be calculated
from Eqs. (19) and (20). Taking the pitch motion as reference, the phase shift between the pitch
and plunge motion can be calculated from

j1 ¼ arctan
m1p2 � m2p1
�m1q2 þ m2q1

: (21)

The results obtained from Eqs. (16)–(21) are the same as those from Lee et al. [7] but the
approach given herein is easier to use since no iteration for the amplitude of the airfoil motion is
required. Similar expressions can be obtained for the plunge dof with b=0 and g 6¼ 0. For
nonlinearities in both dof’s, i.e. b 6¼ 0 and g 6¼ 0, Eq. (13) gives the relationship between a1, e1, f1
and o as follows:

m1a1 þ p1e1 � p2 f 1 þ
3
4
c10ge1r21 ¼ 0; m2a1 þ p2e1 þ p1 f 1 þ

3
4
c10gf 1r

2
1 ¼ 0;

m3a1 þ p3e1 � p4 f 1 þ
3
4
d10ba1r

2
1 ¼ 0; m4a1 þ p4e1 þ p3 f 1 ¼ 0: ð22Þ

Eq. (22) can be solved using the Maple [11] program with a defined initial range for the
frequency. However, an analytical solution of the frequency similar to Eq. (15) has not yet been
successfully derived.

2.2. Higher harmonic balance method

Including terms with 2o in Eq. (13), and after carrying out similar analysis as outlined above,
we can show for the airfoil parameters used in this study that the pitch and plunge amplitudes are
zero. The second dominant harmonic is associated with a frequency of 3o. For a higher order
approximation in the analytical prediction, we write Eq. (13) as follows:

aðtÞ ¼ a1 sinotþ a3 sin 3otþ b3 cos 3ot;

xðtÞ ¼ e1 sinotþ f 1 cosotþ e3 sin 3otþ f 3 cos 3ot: ð23Þ

Substituting Eq. (23) into Eqs. (7) and (12), and upon collecting the coefficients of
sin ot, cos ot , sin 3ot and cos 3ot, we obtain the system of a1, e1, f1, o, a3, b3, e3 and f3
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as follows:

m1a1 þ p1e1 þ q1 f 1 ¼ 0; m2a1 þ p2e1 þ q2 f 1 ¼ 0

m3a1 þ p3e1 þ q3 f 1 þ d10b �3
4
R2
1a3 þ

3
4
R2
1a1 þ

3
2
R2
3a1

� �
¼ 0;

m4a1 þ p4e1 þ q4 f 1 þ d10b �3
4
R2
1b3

� �
¼ 0; ð24Þ

m13a3 þ n13b3 þ p13e3 þ q13 f 3 ¼ 0; m23a3 þ n23b3 þ p23e3 þ q23 f 3 ¼ 0

m33a3 þ n33b3 þ p33e3 þ q33 f 3 þ d10b 3
4
R2
3a3 þ

3
2
R2
1a3 �

1
4
R2
1a1

� �
¼ 0;

m43a3 þ n43b3 þ p43e3 þ q43 f 3 þ d10b 3
4
R2
3b3 þ

3
2
R2
1b3

� �
¼ 0;

where R2
1 ¼ a21 and R2

3 ¼ a23 þ b23: The expressions for mi (i=1,2,3,4), pi (i=1,2,3,4) and qi

(i=1,2,3,4) are given in Appendix B, and the expressions for mi3 (i=1,2,3,4), ni3 (i=1,2,3,4), pi3

(i=1,2,3,4) and qi3 (i=1,2,3,4) are given in Appendix D. The variables e1 and f1 in terms of a1
can be solved from the first two expressions in (24), and their solutions are the same as Eq. (18).
The variables e3 and f3 can be solved from the fifth and sixth expressions in (24) in terms of a3
and b3 as

e3 ¼ E3a3 � F3b3 ; f 3 ¼ F3a3 þ E3b3; (25)

where E3 and F3 are given in Appendix D. Substituting Eqs. (18) and (25) into the other four
expressions in (24), we obtain a system of four equations in a1, a3, b3, and o:

M3a1 þ d10b �3
4
R2
1a3 þ

3
4
R2
1a1 þ

3
2
R2
3a1

� �
¼ 0; M4a1 � d10b34R

2
1b3 ¼ 0;

M33a3 þ N33b3 þ d10bð34R
2
3a3 þ

3
2
R2
1a3 �

1
4
R2
1a1Þ ¼ 0;

M43a3 þ N43b3 þ d10bð34R
2
3b3 þ

3
2
R2
1b3Þ ¼ 0; ð26Þ

where M3, M4, M33, M43, N33, and N43 are functions of system parameters and the fundamental
frequency o, and they are given in Appendix D. Using the relationships between ni3 and mi3, and
qi3 and pi3 (i=1,2,3,4) in Appendix D, we have N43=M33 and M43=�N33.
After some algebraic manipulations we obtain the frequency relation

M5
4 � 8M4

4M43 þ M3
4ð10M2

43 þ 4M2
33 þ M2

3 � 4M33M3Þ

þ M2
4ð30M43M33M3 � 9M43M

2
33 � 12M43M

2
3 � 24M2

43Þ

þ M4ð36M2
43M

2
3 � 30M2

43M33M3 þ 9M4
43 þ 9M2

43M
2
33Þ

þ 3M3
43M

2
3 ¼ 0: ð27Þ

Eq. (27) can be converted to a polynomial of x with degree of 37, where x=o2. Four roots are
positive, and the others are negative, zero or complex.
After considerable algebraic manipulations, R2

1 and R2
3 can be obtained as follows:

R2
1 ¼

1

d10b
4M43ðM3M43 þ M4M33Þ

M2
4 � 4M4M43 � 3M2

43

; (28)

R2
3 ¼

1

d10b
4M4ðM3M4 þ M4M33Þ

3ðM2
4 � 4M4M43 � 3M2

43Þ
: (29)
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For physically meaningful solutions, we need to check the sign of the right hand side of Eqs. (28)
and (29), which should be positive. Taking the positive square root of the positive x as the value of o,
and after substituting into the expressions for M3, M4, M33 and M43, we obtain the right hand side of
Eqs. (28) and (29). Since each frequency root corresponds to two amplitude values for the first and
third harmonic pitch motion, and the left hand side of Eqs. (28) and (29) is the amplitude squared,
only those roots that give positive amplitudes are retained. For the cases we considered, there is only
one frequency that satisfies all these conditions, and hence it is taken to be the physically meaningful
solution. As in the first harmonic balance method, we take the first harmonic pitch motion as
reference and obtain the phase relation for the third harmonic pitch and plunge motions as

f3 ¼ arctan b3=a3
� �

; j1 ¼ arctan f 1=e1
� �

; j3 ¼ arctan f 3=e3
� �

: (30)

2.3. An improved first harmonic balance method

The higher harmonic balance method that retains terms of 3o is rather complex algebraically.
A simpler method giving some improvement to the first harmonic balance method can be
obtained using the idea of Popov [12] when the coefficients of the higher harmonics are small and
we assume the motion to be of the form

aðtÞ ¼ a1 sinotþ �WðtÞ; xðtÞ ¼ e1 sinotþ f 1 cosotþ �sðtÞ; (31)

where

WðtÞ ¼
X
k¼2

ðak sin kotþ bk cos kotÞ ¼
X
k¼2

WkðtÞ;

sðtÞ ¼
X
k¼2

ðek sin kotþ f k cos kotÞ ¼
X
k¼2

skðtÞ; ð32Þ

and e is a small parameter. For a single cubic nonlinearity in the pitch dof, substituting Eq. (31)
into Eqs. (7) and (12), we obtain for the e0 level a set of equations similar to Eq. (14), and the
results of a1, e1, f1, and o are the same as that obtained for the first harmonic balance method. For
the e1 level, we obtain for the system of a3, b3, e3 and f3:

�ðm13a3 þ n13b3 þ p13e3 þ q13 f 3Þ ¼ 0; �ðm23a3 þ n23b3 þ p23e3 þ q23 f 3Þ ¼ 0;

�ðm33a3 þ n33b3 þ p33e3 þ q33 f 3Þ ¼
1
4
d10ba31; �ðm43a3 þ n43b3 þ p43e3 þ q43 f 3Þ ¼ 0 ð33Þ

and

�a3 ¼ A1=D; �b3 ¼ A2=D; �e3 ¼ A3=D; �f 3 ¼ A4=D: (34)

The expressions for mi3, ni3, pi3, qi3, Ai (i=1,2,3,4) and D are given in Appendix D. For the
other terms in Eq. (32), the solutions for ak, bk, ek, fk (k=2, 4,y,) are all zero. Popov’s method
can be extended to give improved analytical solution for cubic nonlinearity in the plunge dof or in
both dof.

3. Illustrative examples

In the following examples, the airfoil parameters used are: m=100, ra=0.5, ah=�0.5,
zx=za=0. Other properties of the airfoil, such as, �o; xa, are varied.
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3.1. Comparison of analytical methods with numerical computations

A typical example of the airfoil motion with a cubic nonlinearity in the pitch dof is given in this
paper for a value of b=80 and g=0. The values for xa and �o are 0.25 and 0.2, respectively. The
results obtained from the first harmonic balance (HB1), high harmonic balance (HB3), and
improved first harmonic balance (Popov) methods are shown in Fig. 2 for the pitch amplitude
versus velocity ratio U�=U�

L: The pitch amplitude is determined from a0=0. In this case, the
bifurcation parameter is the velocity ratio, and for U* equal to the linear flutter speed U�

L ¼

6:2851; a supercritical Hopf-bifurcation is detected. Limit cycle oscillations are observed by
increasing U* for values greater than U�

L:
Comparisons are made with numerical simulations from a fourth-order Runge–Kutta time

integration scheme using Eq. (12) with initial conditions set to a(0)=11 and a0(0)=x0 (0)=x(0)=0.
It is found that at U*/UL

*E2, a jump phenomenon in the pitch amplitude is detected. The jump
position depends on the initial conditions. For example, it varies from U�

�
U�

L ¼ 1:98 to
U�

�
U�

L ¼ 2:08 for a(0) between 0.5 1 and 10 1 while keeping a0(0)=x(0)=x0(0)=0. With different
combinations of a(0), a0(0), x(0) and x0(0) the jump position changes. A small change in the slope
of the pitch amplitude versus U�

�
U�

L curve is detected at U�
�

U�
L � 2 for the first harmonic pitch

motion as shown in Fig. 2. However, there is a large increase in the amplitude of the third
harmonic indicating the importance of this harmonic after the jump. Fig. 2 also shows that the
accuracy of the pitch motion for U�

�
U�

L41:25 determined by the HB1 method is rather poor
compared with numerical computations. The Popov’s method improves the result slightly by
including a small third harmonic term, while the HB3 method gives good accuracy before the
jump. For motions after the jump, the prediction from HB3 for the first harmonic agrees with the
numerical results since the jump at U�

�
U�

L � 2 is very small. However, the amplitude of the third
harmonic curves show that Popov’s and the HB3 results are far below the numerical
computations and the jump phenomenon cannot be predicted analytically.
A spectral analysis has been carried out to determine the Fourier components of the pitch and

plunge motions. Fig. 3 shows a power spectral density (PSD) plot of the pitch motion obtained
Fig. 2. Pitch amplitude versus U�=U�
L: Star: numerical; cross: numerical; solid line: HB3; dash line: HB1; chain-dash

line: Popov’s method.
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Fig. 3. Pitch motion PSD plots from numerical simulations. (a) U�=U�
L=1.2, (b) U�=U�

L=1.98, and (c) U�=U�
L=2.0.

Fig. 4. Fundamental frequency versus U�=U�
L: Star: numerical; solid line: HB3; dash line: HB1 and Popov’s method.
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from numerical simulations for three values of U�
�

U�
L: Sufficiently far from the jump ðU�

�
U�

L ¼

1:2Þ; the dominant frequency is the first harmonic at f=0.0127 while the third harmonic at
f=0.0381 is quite small (Fig. 3a). Just ahead of the jump at U�

�
U�

L ¼ 1:98 (Fig. 3b), the
amplitude of the third harmonic increases substantially, and the fifth and seventh harmonics
are quite noticeable. The frequency f of the first harmonic decreases to 0.01. Immediately behind
the jump, Fig. 3c shows at U�

�
U�

L ¼ 2:0; that f decreases further to a value of 0.007, and more
higher harmonics appear. The amplitude of the thirteenth harmonic becomes noticeable, although
its value is small.
Fig. 4 shows the fundamental frequency o of the pitch and plunge motions obtained

numerically and analytically. The HB3 method gives an improvement over the HB1 results, and
associated with the jump in amplitude, there is also a jump in frequency. Again, the jump position
at U�

�
U�

L � 2 cannot be predicted from either Eqs. (16) or (27).
The phase angle (f3) of the third harmonic relative to the first harmonic as given in Eq. (30) is

shown in Fig. 5. The HB3 method shows an improvement over Popov’s method for U�
�

U�
Lo2;
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Fig. 5. Phase angle of pitch motion (third harmonic) versus U�=U�
L: Star: numerical; solid line: HB3; chain-dash line:

Popov’s method.

Fig. 6. Plunge amplitude versus U�=U�
L: Star: numerical; cross: numerical; solid line: HB3; dash line: HB1; chain-dash

line: Popov’s method.
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and an abrupt change of approximately 2.3 radians in phase angle occurs when the amplitude
jumps at U�

�
U�

L � 2: For U�
�

U�
L42; the analytical results are poor.

Fig. 6 shows that HB1, Popov’s and HB3 methods give quite similar results for the plunge
amplitude determined from x 0=0. Unlike the pitch motion, the jump in the amplitude of the first
harmonic is large, while that for the third harmonic is small.
The phase angle of the plunge motion relative to the first harmonic pitch motion is shown in

Fig. 7. For the first harmonic, HB1 and HB3 methods give almost identical results for j1 as given
in Eqs. (21) and (30), and the two motions are practically in phase. There is some improvement in
j3 for the third harmonic using HB3 over Popov’s method for U�

�
U�

Lo2; but they both yield
poor comparisons with numerical computations. The jump at U�

�
U�

L � 2 is about 2.1 radians
and is very close to that observed for the pitch motion.
The example given here is for a value of b sufficiently large that a jump condition in amplitude

is detected, and is chosen to show the limitations of the analytical methods. By a suitable scaling
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Fig. 7. Phase angle of plunge motion versus U�=U�
L: Star: numerical; cross: numerical; solid line: HB3; dash line: HB1;

chain-dash line: Popov’s method.
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procedure, it can be shown that the amplitude of both pitch and plunge motions is proportional to
1/b1/2. For small values of b, usually the jump condition is not reached before the amplitude
reaches such large values so as to invalidate the aerodynamics assumptions used in Eqs. (5) and
(6). In such cases where only results with a value of U�

�
U�

L that is not significantly greater than
unity are of interest, HB1 and Popov’s methods give reasonably good results and they are
comparable to the more algebraically complex HB3 method.
3.2. Effect of natural frequency ratio on bifurcation

In this example the spring constants are the same as those used in Section 3.1. The airfoil
parameters are similar except for xa=0.1 and �o ¼ 1:0; 1:2 and 1.4. The linear flutter velocities for
these values of �o are 2.5611, 2.951 and 4.881, respectively. Since the interest is in the effect of �o on
the bifurcation behaviour near the linear flutter speed, the HB1 method is sufficiently accurate for
this purpose.
Fig. 8 shows the peak value of the pitch and plunge amplitude determined from a0=0 and x0=0,

respectively, for �o ¼ 1:0: A supercritical Hopf-bifurcation occurs at U�
�

U�
L ¼ 1: The numerical

simulations are obtained from a fourth-order Runge–Kutta time integration scheme using
Eq. (12) with initial conditions set to a(0)=11 and a0(0)=x(0)=x0(0)=0. The comparison between
the HB1 method and numerical computations is extremely good up to U�

�
U�

L ¼ 1:5: The HB3
results are very close to those for HB1 and they are indistinguishable when plotted on the same
graph. This is also the case for Figs. 9 and 12 to be shown later.
Increasing �o to 1.2 the analytical method shows a subcritical Hopf-bifurcation. The HB1

method gives three solutions for each value of U�=U�
L: One of the solutions lies on the middle

unstable branch in Fig. 9. The other two solutions can either have zero amplitude on the lower
branch that coincides with the U�=U�

L axis or it can be located on the upper branch with finite
amplitude. For this set of initial conditions, the numerical computations give a solution with zero
amplitude in the pitch and plunge motion for 0:95pU�

�
U�

Lp1:0: In the range
1:0pU�

�
U�

Lp1:159; the amplitude variation with time is large for a given value of U*/UL
*.
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Fig. 8. (a) Pitch, and (b) plunge amplitude versus U�=U�
L at �o=1.0. Dot: numerical; solid line: HB1/HB3.

Fig. 9. (a) Pitch, and (b) plunge amplitude versus U�=U�
L at �o ¼ 1:2: Dot: numerical; solid line: HB1/HB3.

Fig. 10. Time series for (a) pitch, and (b) plunge motion at �o=1.2 and U�=U�
L=1.15.
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For example, the pitch and plunge time series at U�=U�
L ¼ 1:15 are shown in Fig. 10 and they are

amplitude modulated. An FFT performed on the time series shows a number of sharp peaks at
discrete frequencies. In Fig. 11 an FFT of the pitch motion shown in Fig. 10 is given and the
largest peak is detected at a nondimensional frequency f1=0.0591. A number of smaller peaks are
observed and it is found that the difference in frequency between peaks Df lies between 0.0039 and
0.0041. Within the numerical error in reading the frequency from the FFT plot, it can be said that
the frequency separation is approximately constant. The modulation frequency computed from
Fig. 10 is approximately 0.004 which agrees with Df from the FFT. The frequency of the pitch
motion determined from Fig. 10 is approximately 0.059 which corresponds to f1 in Fig. 11. For
U�=U�

LX1:159; HB1 results in Fig. 9 agree with numerical computations extremely well. The
nature of the time series observed from numerical simulations in the range 1pU�=U�

Lp1.159 is
not fully understood and this phenomenon is presently under investigation. Similar results are
obtained for the plunge motion.
A perturbation-incremental method developed by Chung et al. [13] for the investigation of

strongly nonlinear autonomous oscillators with many dof is applied to this problem. It is found
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Fig. 11. FFT of pitch motion at �o ¼ 1:2 and U�=U�
L=1.15. f1=0.0591, f2=0.0549, f3=0.0510, f4=0.0630, f5=0.0671,

f6=0.0711, f7=0.0752.

Fig. 12. (a) Pitch, and (b) plunge amplitude versus U�=U�
L at �o ¼ 1:4: Dot: numerical; solid line: HB1/HB3.
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that a saddle-node bifurcation occurs at U�=U�
L=0.9084 where a Floquet multiplier crosses the

unit circle at 1. The upper branch in Fig. 9 for 0.9084pU�=U�
Lp0.9643 is stable and a limit cycle

emerges. Between 0.9643pU�=U�
Lp1.1508, a torus bifurcation occurs in which a pair of Floquet

multipliers crosses the unit circle at points other than71, and the stable solutions are tori. Limit
cycle becomes stable again for U*/UL

*41.1508. The U*/UL
* range where stable torus occurs is very

close to that predicted numerically.
A further increase of �o to 1.4, both HB1, HB3 and numerical simulations predict a stable limit

cycle for U�=U�
L41.0. The amplitude of the pitch and plunge motion determined from a0=0 and

x0=0, respectively, agrees almost perfectly between HB1, HB3 and numerical simulations as
shown in Fig. 12. On the other hand, by using the perturbation-incremental method we obtain
further that the upper branch of the pitch bifurcation diagram between 0.6409 pU*/UL

*p0.8334
is unstable, but the limit cycle becomes stable for U*/UL

*40.8334. Using the initial conditions set
at a(0)=11 and a0(0)=x(0)=x0(0)=0, solutions are only obtained on the lower branch between
0.95pU*/UL

*p1.0, and on the upper branch for U*/UL
*41.0. The upper stable branch in the pitch

motion bifurcation diagram for U*/UL
*40.8334 can be reached by using different initial

conditions in the time integration scheme. For example, Fig. 13 shows the numerical solution of
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Fig. 13. Effect of a(0) on pitch motion subcritical Hopf-bifurcation location at �o ¼ 1:4; a0(0)=x(0)=x0(0)=0. Solid

line: HB1; dot: HB3; dash line: numerical. Each dash line corresponds to the following initial conditions: (a) að0Þ ¼
12:01; (b) að0Þ ¼ 10:01; (c) að0Þ ¼ 8:01; 8:51; 9:01; 9:51; (d) að0Þ ¼ 7:01; 7:51; (e) að0Þ ¼ 6:51; (f) að0Þ ¼ 6:01; (g) að0Þ ¼ 5:51;
(h) að0Þ ¼ 5:01; (i) að0Þ ¼ 4:51; (j) að0Þ ¼ 4:01; (k) að0Þ ¼ 3:01; 3:51; (l) að0Þ ¼ 0:51; 1:01; 1:51; 2:01; 2:51:

Fig. 14. Effect of a(0) on plunge motion subcritical Hopf-bifurcation location at �o ¼ 1:4; a0(0)=x(0)=x0(0)=0.

Identification of curves is similar to Fig. 13.

B.H.K. Lee et al. / Journal of Sound and Vibration 281 (2005) 699–717 713
the pitch amplitude determined from a0=0 for different values of a(0) while setting
a0(0)=x(0)=x0(0)=0. Also shown in the figure are the HB1 and HB3 results. The HB1 results
are almost identical to those from HB3 except on the upper branch where a small difference is
seen. On this branch HB3 agrees perfectly with numerical simulations. With different
combinations of these four initial conditions, the jump between the stable branches can occur
for U*/UL

*
X0.8334. The cross over between the stable and unstable branches for the plunge

motion shown in Fig. 12 is an interesting phenomenon that is still under investigation. Again, by
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varying a(0) while setting a0(0)=x(0)=x0(0)=0, a figure similar to Fig. 13 can be obtained for the
plunge motion. Fig. 14 shows only a few jump points between the two stable branches in the
bifurcation diagram. By continuing the upper branch from U�=U�

L=0.91 to 0.8334, it is seen that
the unstable branch lies above the stable branch. However, a jump between the two stable
branches is possible numerically. The HB1 and HB3 give almost identical results for the plunge
motion.
4. Concluding remarks

The harmonic balance method applied to the pitch/plunge motion of an airfoil with a
cubic nonlinearity in the restoring forces is formulated in a manner that the frequency and
amplitude can be determined directly by solving a nonlinear algebraic equation without an
iteration procedure commonly used by the aeroelastician. A higher order solution is also presented
which is algebraically more complex. The results obtained can be in very good agreement
with those obtained from numerical simulations for certain airfoil motions. Two examples are
given when the harmonic balance method fails to predict some interesting phenomena that
can only be simulated numerically, that being a secondary bifurcation. However, by including
terms at least up to the ninth harmonic in the series representation for the pitch and plunge
motions, the dynamics of the secondary bifurcation can be captured for the airfoil parameters
investigated in [14].
Appendix A. Coefficients in aeroelastic equations (Eq. (12))

c0 ¼ 1þ 1=m; c1 ¼ xa � ah=m; c2 ¼ 2ð1� c1 � c2Þ=mþ 2Bx �o=U�;

c3 ¼ ð1þ ð1� 2ahÞð1� c1 � c2ÞÞ=m; c4 ¼ 2ð�1c1 þ �2c2Þ=m;

c5 ¼ 2ð1� c1 � c2 þ ð1=2� ahÞð�1c1 þ �2c2ÞÞ=m;

c6 ¼ 2�1c1ð1� �1ð1=2� ahÞÞ=m; c7 ¼ 2�2c2ð1� �2ð1=2� ahÞÞ=m; c8 ¼ �2�21c1=m;

c9 ¼ � 2�22c2=m; c10 ¼ �o=U�
� �2

; d0 ¼ xa=r2a � ah=mr2a; d1 ¼ 1þ 1þ 8a2h
� �

=8mr2a;

d2 ¼ � 1þ 2ahð Þð1� c1 � c2Þ=mr2a;

d3 ¼ 1� 2ahð Þ=2mr2a � ð1þ 2ahÞð1� 2ahÞð1� c1 � c2Þ=2mr2a þ 2Ba=U�;

d4 ¼ � 1þ 2ahð Þð�1c1 þ �2c2Þ=mr2a;

d5 ¼ � 1þ 2ahð Þð1� c1 � c2Þ=mr2a � ð1þ 2ahÞð1� 2ahÞðc1�1 � c2�2Þ=2mr2a;

d6 ¼ � ð1þ 2ahÞc1�1ð1� �1ð1=2� ahÞÞ=mr2a;

d7 ¼ � ð1þ 2ahÞc2�2ð1� �2ð1=2� ahÞÞ=mr2a;

d8 ¼ ð1þ 2ahÞc1�
2
1=mr2a;

d9 ¼ ð1þ 2ahÞc2�
2
2=mr2a; d10 ¼ 1=U�

� �2
:
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Appendix B. Coefficients in amplitude–frequency relations (Eq. (14))

t1 ¼ �21 þ o2
� ��1

; t2 ¼ �22 þ o2
� ��1

; m1 ¼ �c1o2 þ c5 þ c6�1t1 þ c7�2t2;

m2 ¼ c3o� c6ot1 � c7ot2; m3 ¼ �d1o2 þ d5 þ d6�1t1 þ d7�2t2 þ d10;

m4 ¼ d3o� d6ot1 � d7ot2; p1 ¼ �c0o2 þ c4 þ c8�1t1 þ c9�2t2 þ c10;

p2 ¼ c2o� c8ot1 � c9ot2; p3 ¼ �d0o2 þ d4 þ d8�1t1 þ d9�2t2;

p4 ¼ d2o� d8ot1 � d9ot2; q1 ¼ �p2; q2 ¼ p1; q3 ¼ �p4; q4 ¼ p3;

E1 ¼ �
m1p1 þ m2p2

p21 þ p22
; F1 ¼

m1p2 � m2p1
p21 þ p22

:

Appendix C. Coefficients in frequency relation (Eq. (16))

l0 ¼ c2ðd4 � d0xÞ � d2ðc4 � c0x þ c10Þ; l1 ¼ c2d8�1 � d2c8�1 � c8ðd4 � d1xÞ þ d8ðc4 � c0x þ c10Þ;

l2 ¼ c2d9�2 � d2c9�2 � c9ðd4 � d0xÞ þ d9ðc4 � c0x þ c10Þ; l3 ¼ ð�1 � �2Þðc8d9 � c9d8Þ;

g0 ¼ l0ðc5 � c1xÞ; g1 ¼ l1ðc5 � c1xÞ þ l0c6�1; g2 ¼ l2ðc5 � c1xÞ þ l0c7�2;

g3 ¼ l1c6�1; g4 ¼ l2c7�2; g5 ¼ l3ðc5 � c1xÞ þ l1c7�2 þ l2c6�1; g6 ¼ g7 ¼ 0; g8 ¼ l3c6�1;

g9 ¼ l3c7�2; h0 ¼ ðc4 � c0x þ c10Þðd4 � d0xÞ þ c2d2x;

h1 ¼ ðc4 � c0x þ c10Þd8�1 þ ðd4 � d0xÞc8�1 � c2d8x � c8d2x;

h2 ¼ ðc4 � c0x þ c10Þd9�2 þ ðd4 � d0xÞc9�2 � c2d9x � c9d2x; h3 ¼ c8d8ð�21 þ xÞ;

h4 ¼ c9d9ð�22 þ xÞ; h5 ¼ ðc9d8 þ c8d9Þðx þ �1�2Þ;

k0 ¼ c3h0; k1 ¼ c3h1 � c6h0; k2 ¼ c3h2 � c7h0; k3 ¼ c3h3 � c6h1; k4 ¼ c3h4 � c7h2;

k5 ¼ c3h5 � c7h1 � c6h2; k6 ¼�c6h3; k7 ¼�c7h4; k8 ¼ �c6h5 � c7h3; k9 ¼ �c6h4 � c7h5;

u0 ¼ ðc4 � c0x þ c10Þ
2
þ c22x; u1 ¼ 2ðc4 � c0x þ c10Þc8�1 � 2c2c8x;

u2 ¼ 2ðc4 � c0x þ c10Þc9�2 � 2c2c9x; u3 ¼ c28ð�
2
1 þ xÞ; u4 ¼ c29ð�

2
2 þ xÞ; u5 ¼ 2c8c9ð�1�2 þ xÞ;

v0 ¼ d3u0; v1 ¼ d3u1 � d6u0; v2 ¼ d3u2 � d7u0; v3 ¼ d3u3 � d6u1; v4 ¼ d3u4 � d7u2;

v5 ¼ d3u5 � d7u1 � d6u2; v6 ¼ �d6u3; v7 ¼ �d7u4; v8 ¼�d6u5 � d7u3; v9 ¼ �d6u4 � d7u5:

Li ¼ gi � ki þ vi ði ¼ 0; 1; 2; :::; 9Þ:
Appendix D. Coefficients in third harmonic balance method (Eq. (24))

t13 ¼ �21 þ ð3oÞ2
� ��1

; t23 ¼ �22 þ ð3oÞ2
� ��1

; m13 ¼ �c19o2 þ c5 þ c6�1t13 þ c7�2t23;

m23 ¼ c33o� c63ot13 � c73ot23; m33 ¼ �d19o2 þ d5 þ d6�1t13 þ d7�2t23 þ d10;

m43 ¼ d33o� d63ot13 � d73ot23; n13 ¼ �m23; n23 ¼ m13; n33 ¼ �m43; n43 ¼ m33;

p13 ¼ �c09o2 þ c4 þ c8�1t13 þ c9�2t23 þ c10; p23 ¼ c23o� c83ot13 � c93ot23;

p33 ¼ �d09o2 þ d4 þ d8�1t13 þ d9�2t23; p43 ¼ d23o� d83ot13 � d93ot23;

q13 ¼ �p23; q23 ¼ p13; q33 ¼ �p43; q43 ¼ p33;
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D ¼ m13ðn23ðp33q43 � q33p43Þ � n33ðp23q43 � q23p43Þ þ n43ðp23q33 � q23p33ÞÞ

� m23ðn13ðp33q43 � q33p43Þ � n33ðp13q43 � q13p43Þ þ n43ðp13q33 � q13p33ÞÞ

þ m33ðn13ðp23q43 � q23p43Þ � n23ðp13q43 � q13p43Þ þ n43ðp13q23 � q13p23ÞÞ

� m43ðn13ðp23q33 � q23p33Þ � n23ðp13q33 � q13p33Þ þ n33ðp13q23 � q13p23ÞÞ;

A1 ¼
1
4
d10ba31ðn13ðp23q43 � q23p43Þ � n23ðp13q43 � q13p43Þ þ n43ðp13q23 � q13p23ÞÞ;

A2 ¼ � 1
4
d10ba31ðm13ðp23q43 � q23p43Þ � m23ðp13q43 � q13p43Þ þ m43ðp13q23 � q13p23ÞÞ;

A3 ¼
1
4
d10ba31ðm13ðn23q43 � q23n43Þ � m23ðn13q43 � q13n43Þ þ m43ðn13q23 � q13n23ÞÞ;

A4 ¼ � 1
4
d10ba31ðm13ðn23p43 � p23n43Þ � m23ðn13p43 � p23n43Þ þ m43ðn13p23 � p13n23ÞÞ;

E3 ¼ �
m13p13 þ m23p23

p213 þ p223
; F3 ¼

m13p23 � m23p13
p213 þ p223

; M3 ¼
1

p1q2 � p2q1
� �

m1 p1 q1

m2 p2 q2

m3 p3 q3

��������

��������
;

M4 ¼
1

p1q2 � p2q1
� �

m1 p1 q1

m2 p2 q2

m4 p4 q4

��������

��������
; M33 ¼

1

p13q23 � p23q13
� �

m13 p13 q13

m23 p23 q23

m33 p33 q33

��������

��������
;

M43 ¼
1

p13q23 � p23q13
� �

m13 p13 q13

m23 p23 q23

m43 p43 q43

��������

��������
; N33 ¼

1

p13q23 � p23q13
� �

n13 p13 q13

n23 p23 q23

n33 p33 q33

��������

��������
;

N43 ¼
1

p13q23 � p23q13
� �

n13 p13 q13

n23 p23 q23

n43 p43 q43

��������

��������
:
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